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This paper is the first analysis of the economic factors of global light pollution. Light pollution commonly
refers to excessive or obtrusive artificial light caused by bad lighting design. Light pollution generates
significant costs including negative impacts on wildlife, health, astronomy, and wasted energy—which in the
U.S. amounts to nearly 7 billion dollars annually. Current scientific models of light pollution are purely
population based. The current paper utilizes unique remote sensing data and economic data from the World
Bank to quantify the economic causes of light pollution globally. Fractional logit models show that, similar to
other types of pollution, both population and GDP are significant explanatory variables.
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1. Introduction

This paper examines light pollution, an issue that has been largely
neglected in economics. Light pollution has been described as “One of
the most rapidly increasing alterations to the natural environment;” a
problem whereby “mankind is proceeding to envelop itself in a
luminous fog” (Cinzano et al., 2001, 689). Light pollution is a broad
term referring to excessive or obtrusive artificial light caused by bad
lighting design. It includes such things as glare, sky glow, and light
trespass. Excessive and misdirected light from streetlights, homes, and
towns not only interferes with wildlife, stargazing, sleep habits, and
professional astronomy, but it also wastes a vast amount of energy.
Many people assume artificial light provides safety and improves
visibility. However, a large portion of lighting does neither. Lighting that
is overused, misdirected, or otherwise obtrusive is simply pollution.

For example, many cities produce a glow in the night sky that can
be seen for 100miles away. Consequently, 66% of the United States
and 50% of the European population can no longer see the Milky Way
at night (Cinzano et al., 2001). Additionally, approximately 40% of the
United States and almost 20% of the European Union population has
lost the ability to view the night sky with an eye that can adapt to the
darkness of the night sky—in other words, it is as if they never really
experience nighttime (Cinzano et al., 2001, 689).

This paper is meant to address a major shortcoming in the current
modeling and understanding of light pollution. Current models ignore
economic factors contributing to light pollution and focus almost
entirely on population being the key determinate. We correct for this
shortcoming by combining a broad spectrum of World Bank data with
satellite data measuring the amount of artificial sky brightness (as
distinct from the utilization of useful lighting) in 184different countries.
Using fractional logit models to analyze these data, we are able to
determine the key factorswhich contribute to global light pollution. Not
surprisingly, we find strong evidence that economic activity and urban
density are correlated with the existence of light pollution.

This paper is divided up into the following sections. Section 2 begins
with a brief overview of light pollution and how it fits into the
externality literature. Section 3 provides an explanation of how various
levels of light pollution were measured and quantified. Section 4
discusses ourmodels and their results. Section5 offers some conclusions
and discusses areas of future research.

2. Externalities and light pollution

Whilemost people have a sense that artificial lighting can interfere
with birds and insects, the effects are far more common, widespread,
and serious than commonly realized. Light pollution does substantial
damage to wildlife, aesthetics, and even to human health. Mammals,
birds, amphibians, insects, fish and even plants are all affected by light
pollution. Light pollution disrupts feeding, reproduction, sleeping and
migration. Indeed, problems from light pollution are so pervasive that
“unless we consider protection of the night, our best-laid conservation
plans will be inadequate” (Rich and Longcore, 2006, 2). Until very
recently, darkness has been an inescapable part of the environment
and natural history or our planet. Accordingly, life has evolved and
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adapted to daily, monthly, and annual cycles in the level of ambient
light. We should not be surprised that the radical transformation of
the environment, made possible by artificial lights, has substantial, if
inadequately understood, deleterious consequences.

Light pollution exhibits many of the characteristics of a negative
externality and has been studied by biologists and astronomers for many
years. For example, light pollution disrupts the migration patterns of
nocturnal birds and can cause hatchling sea turtles to head inland, away
from the sea, and be eaten by predators or run over by cars (Verheijen,
1985;Witherington and Bjorndal, 1991; Salmon andWitherington, 1995;
Salmon et al., 1995). Human physiology is not immune to the problem of
light pollution. Davis et al. (2001) have concluded that there is an
increased risk of breast cancer inwomen due to lower levels ofmelatonin
production that results from light pollution. Ostensibly, light pollution
keeps people from falling into a deep sleep, which causes their bodies to
decrease the production of melatonin (Kerenyi et al., 1990).

Light pollution also interferes with both professional and amateur
astronomy by reducing the visibility of galaxies, nebulae, and other
celestial objects. As a related matter, light pollution does tremendous
damage to a unique scenic resource—the night sky (Gallaway, in press).
Economic studies quantifying this damage are only now beginning.
However, the night sky has been a part of art, science, and culture for as
long as these things have existed.When one considers that this cultural
resource is no longer visible to themajority of people living indeveloped
countries, and that few places on the globe are unaffected by sky glow,
then it is not unreasonable to suspect that aesthetic damages may be
exceptionally large (Gallaway, in press). Indeed, light pollution is
starting to encroach into areas previously noted for their dark skies.
Such damage to an area's natural amenities likely reduceswillingness to
pay by visitors to the area (Murdock, 2006; Font, 2000). This could be
especially acute for state and national parks and other rural areas.1

Recent studies have shown that amajority of visitors to specificNational
Parks in the American west have a positive willingness to pay to
preserve dark skies in those locations.

Light pollution also wastes energy. Accordingly, poor lighting
design contributes to increased carbon dioxide emissions and global
warming. In the United States, roughly 6% of the 4.054 million
megawatt hours (mwh) of electricity produced are used for outdoor
lighting and an estimated 30% of this is wasted as light pollution
(California Energy Commission 2005). This translates into 72.9million
mwh of electricity needlessly being generated at a cost of $6.9 billion a
year. Furthermore, this unnecessary electricity usage generated an
additional 66 million metric tons of CO2 (Ristinen and Kraushaar,
2006; DOE, 2006). Eliminating light pollution would be the CO2

equivalent of removing over 9.5 million cars from of the road (EPA,
2006; DOT, 2001).2

Viewing excessive artificial light as a form of pollution is made
difficult by the fact that, other than being unwanted, light as a
pollutant is no different than light as a good. With many negative
externalities, the good and the pollutant are distinct. Gas and coal
provide services key to the propulsion of vehicles or the generation of
electricity. It is easy to distinguish these services from undesirable
byproducts such as CO2, SO2, or NOx. Light pollution does not lend
itself to such easy categorization. However, other negative external-
1 In Chaco Culture National Historical Park, for example, the night sky is officially
one of the assets the park tries to preserve for the public. Even though the park is in a
remote and relatively unpopulated part of New Mexico, it is increasingly affected by
light pollution.

2 These are rough estimates based on data from stated references. The figures are
simply meant to provide “ballpark” figures for the scope of the problem. Additional
technologies which would turn off lights when not in use, or which, in addition to
eliminating uplighting, would reduce glare and allow improved visibility with lower
wattage fixtures would increase energy savings estimates. Alternatively, a significant
percentage of recently installed outdoor lighting is already well designed and efficient.
Accounting for this newer lighting would reduce estimates. The lack of good data is
one of the challenges to mitigating light pollution. The methodology used here is
available upon request.
ities share this trait. Non-point pollutants such as fertilizers or
pesticides come to mind.With all of these, it is very often the case that
the good in question becomes problematic when it is found in the
wrong location or in the wrong amount, or when it affects the wrong
population. We might argue that the good becomes a pollutant when
its effects are something other than its intended purpose. Fertilizer
that increases crop yield is a good; runoff that leads to reduced levels
of dissolved oxygen in a stream is a pollutant. Similarly, light that
improves visibility (for humans) is a good. However when lighting
causes glare, or deepens shadows, or washes out the stars, this
reduces visibility. Such light is light pollution. Neon lights might
improve the visibility of a sign or a storefront. However, a thousand
such displays merely add to the clutter and reduce the visibility of any
individual sign. This positional externality could also be classified as
pollution.3

Interestingly, light pollution has some characteristics of a local, a
regional and a global externality. Often, nuisance problems, such as
homeowners being bothered by lights from ball parks, car lots, or
prisons, are local. Sky glow might be characterized as a regional issue,
in as much as the glow from large cities can wash out part of the
heavens from even 200 miles away.4 On the other hand, if one was
more concerned with light pollution's deleterious impact on migra-
tory wildlife or scientific research, or if one were examining the
wasted energy and global warming implications, then it might be best
to view light pollution as a global externality. Naturally, local
problems are easier to address. Indeed, many communities have
lighting ordinances designed variously to mitigate nuisance lighting,
reduce municipal lighting expenses, or, more commonly in the desert
southwest, to protect an area's dark skies for cultural, aesthetic, or
scientific purposes.

In many ways, light pollution is similar to other pollutants and
environmentalproblems thathavebeencarefully studiedbyeconomists
over the years (Baumol, and Oates, 1971; Wirl, 2007; Sobotta et al.,
2007; Picazo-Tadeo and Reig-Martinez, 2007; Shimshack et al., 2007). It
is easier to identify light pollution than tomeasure its ‘damage’ or create
politically palatable solutions. Certainly, one can imagine additional
negative, as well as positive, externalities associated with artificial
lighting. We do not attempt to measure damages or make policy
recommendations in this paper. The point is simply that there are
important, widespread problems associated with artificial lighting. In
this paper, we identify economic factors that contribute to the problem.
In particular, we accept a definition of light pollution, by Cinzano et al.
(2001) as “the alteration of the ambient light levels in the night
environment produced by man-made light.” We also rely on the light-
pollution data they generated by using satellitemeasurements tomodel
this artificial sky brightness at zenith.

3. Light pollution data

The light pollution data used in this paper are remote sensing data
from satellite observations. The raw data are from the Defense
Meteorological Satellite Program (DMSP) Operational Linescan
System (OLS). Data from the DMSP-OLS were, for example, previously
used to create a widely published cloud-free composite image of the
“Earth at Night” (Elvidge, et al., 1997, 2001; Mayhew and Simmon,
2000). This striking image did help illustrate the scope of artificial
3 Noise pollution iswidely recognized, complained about, and regulated; yet it is similar
to light pollution in many respects. While some noises are a byproduct, others such as
radios, sirens, alarms, shouts, and the thousandsof conversations of a throng, are thegoods
themselves. We accept that one person's loud music is pollution in another's ears.

4 Astronomers have a law, known as Walkers Law, which estimates the reduced
visibility from a city based on its size and distance from the viewer. The model
estimates the increase in the sky's natural glow when looking at the sky 45° above the
horizon in the direction of the pollution's source. Looking towards a metropolitan area
of 1.5 million people could increase sky glow by 25% for a location over 50 miles away.
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lighting but it was not sufficiently refined to accurately model light
pollution and allow comparisons across different times or locations.

Researchers used DMSP-OLS data to create the first “quantitative
and accurate depiction of the artificial brightness of the night sky” to
be “available to the scientific community and governments” (Cinzano
et al., 2001, 689). Their data is particularly valuable because of the
singular lack of data on light pollution. Other direct measures of light
pollution are ad hoc, ground-based measures (Cinzano et al., 2001).
Such data are sporadic and limited to only a few locations, including
data collected near observatories, data gathered by amateur astron-
omers, and data collected by the National Park Service in a number of
national parks in the western United States.

This lack of direct data has forced researchers to rely almost
exclusively on population-based models of light pollution (e.g.,
Walker, 1977). Indeed, there is a very strong connection between
population and light pollution. Nevertheless, “the apparent propor-
tionality between population and sky glow breaks down going from
large scales to smaller scales and looking in more detail” (Cinzano et
al., 2001, 690). Additionally, light pollution is affected by such things
as the level and composition of economic development, and local
ordinances (e.g. Bertiau et al., 1973). Of course, population-based
models also depend upon the reliability of the population data. Even
when accurate data are available, they often give the total population
for some relatively large area, say a province or a metropolitan area,
but offer no details about how the population is distributed within
those areas. Accordingly, this new empirical data on light pollution
opens up new possibilities for analysis.

Satellite observations were collected for “the darkest nights of the
lunar cycles” for nearly 30 nights in 1996 and 1997. (Cinzano et al.,
2000, 642). The data “covers the range for primary emissions from the
most widely used lamps for external lighting:mercury vapor (545 and
575 nm), high-pressure sodium (from 540 to 630 nm), and low-
pressure sodium (589 nm)” (Cinzano et al., 2000, 642).5

Lights that did not reoccur in the same place at least three times
were eliminated from the data. Crucially, earth-based measurements
were used to ensure that these data were translated into an accurate
measure of a key type of light pollution—artificial sky brightness—
rather than simply measuring lights (Cinzano et al., 2000, 649, 652).6

Modeling techniques, taking into account light scattering and
diffraction, were then used to compute the propagation of light
pollution. Simplifying assumptions generated results that emphasize
the distribution of light pollution rather than show how local sky
brightness is affected by atmospheric conditions and elevation
(Cinzano et al., 2001, 691).The minimum detectible luminance, of a
light with and effective wavelength of 550 nm, corresponded to what
one might expect from two 250-w high-pressure sodium lamps
placed every square kilometer. (Cinzano et al., 2000, 643).
5 Ordinarily, these data are collected at a gain setting of 60 dB. For this project, some
observations were gathered at a setting of 24 dB to avoid saturation, while other
observations were acquired at settings of 40 and 50 db to permit detection of suburbs
and small towns (Cinzano et al., 2000, 642).

6 The methodology for gathering and processing the data used in the atlas are
described at length in Cinzano, et al., 2001 and especially in Cinzano et al., 2000. We
have provided a brief discussion in this paper. Cinzano et al. provided a summary
outline of their data processing. “The primary processing steps include: (i) establish-
ment of a reference grid with finer spatial resolution than the input imagery using the
1-km equal-area Interrupted Homolosine Projection (Goode, 1925; Steinwand, 1993)
developed for the NASA-USGS Global 1-km Advanced Very High Resolution Radio-
meter (AVHRR) project; (ii) identification of the cloud-free section of each orbit based
on OLS-TIR data; (iii) identification of lights, removal of noise and solar glare, cleaning
of defective scan lines and cosmic rays; (iv) projection of the lights from cloud-free
areas from each orbit into the reference grid; (v) calibration to radiance units using
prior-to-launch calibration of digital number for given input telescope illuminance and
VDGA gain settings in simulated space conditions; (vi) tallying of the total number of
light detections in each grid cell and calculation of the average radiance value and (vii)
filtering of images based on frequency of detection to remove ephemeral events”
(Cinzano, et al., 2001, 643).
The resulting map demarks areas by the level of light pollution
present. These levels corresponded to various ratios of artificial sky
brightness to average natural night sky brightness (Cinzano et al.,
2001, 691–692). Finally, the light pollution atlas was compared to a
population atlas using the same grid size.7 The two data sets were
superimposed and statistics were extracted for 201 countries by
tallying the percent of the populations living within each of the light
pollution tiers (Cinzano et al., 2001, 696).

In addition to population figures, data were collected showing the
percentage of land area that was affected by various levels of light
pollution for each country. For example, in 1996/1997, 85.3% of the
EU's land mass and 61.8% of the US's land mass were covered by a
night sky where artificial light added at least 11% to the natural
brightness of the sky at zenith (Cinzano et al., 2001, 704). The percent
of landmass affected drops sharply for higher levels of light pollution
so that only 0.1% of the EU and 0.6% of the US were severely polluted
with artificial nighttime brightness more than 27 times the natural
levels (Cinzano et al., 2001, 704). Nevertheless, most of the developed
world lacks pristinely dark areas and most of the world's population
encounters some light pollution. Light pollution is concentrated
precisely because populations are concentrated. Moreover, this
concentration tends to be along coastal areas, which can often be
ecologically important. To use a previous example, light pollution
from coastal cities and resorts can interfere with the way sea turtle
hatchlings use positive phototaxis to find the ocean.

In this paper we have chosen to focus on three different tiers of
light pollution. The first of these is the percent of the population
affected by the minimum level of artificial brightness required for an
area to be considered polluted, which we have called POP3. These
criteria consider the night sky polluted when the artificial brightness
of the sky is greater than 10% of the natural sky brightness above 45°
of elevation (Cinzano et al., 2001, 697; Smith, 1979).8 We also
considered two more severe categories of light pollution, with total
sky brightness, from natural and artificial sources, at double and
quadruple natural levels. We examine both the percent of population,
POP1 and POP2 respectively, and the percent of landmass affected by
these high levels of light pollution, SURFACE1 and SURFACE2
respectively.9

For example, in Table 2, we can see that almost 99% of the
population in North American countries live in an area where light
pollution has reached the threshold level, 94% of the population lives
with sky glow that is at least double its natural level while 70% of the
population experiences sky glow that is 4 times higher than the
natural level of light at night. In addition, in North American countries
an average of 41.4 and 9.93% of the land has a night sky glow that is,
respectively, at least twice, or 4 times the natural level.10
7 The Landscan 2000 DOE global population density database.
8 For those not living in urban areas, light pollution is often seen as sky glow above

neighboring towns or cities. This sky glow can be seen from as far as 200miles away and
is much worse closer to the horizon in the direction of its source. The observed light
pollution is a function of the angle altitude above the horizon as well as the brightness
and distance from the source. A location meeting the minimum threshold for pollution
might have darker skies at zenith and much brighter skies closer to the horizon.

9 That is, an artificial sky brightness equal to natural level will double the total sky
brightness, and artificial levels are three times natural levels, quadruple the total
levels. Pop1 measures the percent of the population living where the total light level is
at least twice the natural level. Similarly Pop2 measures the percentage of the
population living under skies where the total light level is at least four times the
natural level. Surface1 and Surface2 have a similar interpretation.
10 Our aggregate statistics do not compare directly to those reported by Cinzano. For
example, Cinzano provides data for 204 countries. Only 186 of these matched
countries for which we had World Bank data. Moreover, Cinzano's aggregate statistics
are weighted averages, while we are only able to report un-weighted averages.
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Table 1
Variable definitions.

Variable Definition

POP1 Percentage of the population living under skies whose
artificial glow is greater than the natural level

POP2 Percentage of the population living under skies whose
artificial glow is 3 times the natural level

POP3 Percentage of the population living under skies above
the threshold pollution level

SURFACE1 Percentage of the surface area with skies whose artificial
glow is greater than the natural level

SURFACE2 Percentage of the surface area with skies whose artificial
glow is 3 times the natural level

GDP Per Capita Real GDP per capita in 1996, 1995 U.S. dollars
Urban Percentage of total population living in urban areas
Arable Percentage of total land area that is arable
Energy Energy (oil, natural gas, and coal) depletion/extraction

as percentage of Gross National Income
Foreign Investment Net inflows of foreign direct investment as a percentage

of GDP
Roads Percent of total roads paved

Sources: Light pollution data is from Cinzano et al. (2001). All other data is from the
World Bank (2002).
Note: All data unless otherwise noted is from 1996.

Table 3
Summary statistics for the world.

Number of
countries

Mean Standard
deviation

Minimum Maximum

POP1 184 0.507 0.336 0 1
POP1 184 0.362 0.316 0 1
POP3 184 0.634 0.347 0 1
SURFACE1 184 0.170 0.288 0 1
SURFACE2 184 0.081 0.201 0 1
GDP Per Capita 162 $6,155 $9,723 $110 $45,223
Urban 173 53.386 23.460 5.800 100.000
Arable 174 14.300 13.393 0.075 60.383
Energy 164 4.701 11.786 0.000 73.018
Foreign Investment 151 3.541 12.268 −8.520 145.132
Roads 155 48.723 33.724 0.800 100.000

661T. Gallaway et al. / Ecological Economics 69 (2010) 658–665
4. Fractional logit regression results and discussion

Table 1 presents variable definitions both for the light pollution
variables discussed above and for the explanatory variables used in
the regressions discussed in this section. Table 2 presents the
percentage of the population or surface area in a light polluted state
in various geographic regions in the world. Table 3 includes summary
statistics for the variables included in the regression analysis. Finally,
Tables 4 and 5 present coefficient estimates and marginal effects from
light pollution fractional logit regressions. Estimates are provided for
the five measures of light pollution presented in the previous section
(Table 2)—three measures of the percentage of the population living
in a light polluted tier in a given country and two measures of the
percentage of the surface area of a given country that lies within a
light polluted tier. Recall that we begin with a lower threshold level of
pollution, one where the artificial glow equals the normal night glow
(POP1 and SURFACE1) and go up to an artificial glow that is three
times the normal night glow (POP2 and SURFACE2). Finally, we also
include the percentage of the population living above the scientific
Table 2
Percentage of the population or the surface area in light polluted state by geographic
region or income level.

POP1 POP2 POP3 SURFACE1 SURFACE2 Number of
countries

The World 50.71 36.16 63.40 16.97 8.08 184
North America 94.33 70 98.67 41.4 9.93 3
South Asia 17 7 41.43 2.66 0.33 7
East Asia and Pacific 43.68 35 53.59 17.2 12.42 22
European Union 90 72 99.00 36.7 11.5 N.A.
Europe and Central
Asia

72.83 47.33 91.23 29.48 11.42 52

Latin America and
Caribbean

56.51 42.97 71.60 13.09 6.24 35

Middle East and
North America

77 63.52 86.95 28.17 17.32 21

Sub-Saharan African 13.32 7.41 18.75 0.43 0.14 44
Low income 20.18 9.88 31.33 1.17 0.22 60
Low middle income 45.96 29.83 64.87 5.99 2.51 47
Upper middle income 62.61 44.97 76.45 19.55 7.26 33
High income OECD 86.86 71.55 96.55 38.71 16.1 22
High income
non-OECD

90.14 72.77 95.00 57.95 34.67 22

Geographic regions and income levels are defined by the World Bank (2002) except for
European Union, which is as defined by Cinzano et al. (2001).
minimum standard for light pollution (see Cinzano et al., 2001).
Fractional logit models are presented because the dependent
variables are percentages.

A fractional logit model assumes that the model is given by:

Pop1 = 1= ð1 + expð−XβÞÞ ð1Þ

A logit transformation of Eq. (1) yields:

lnðPop1= ð1 – Pop1ÞÞ = Xβ ð2Þ

The original dependent variable, which is a fraction and bounded by 0
and1 isnowtransformed into a continuousvariableon the real line. Papke
and Wooldridge (1996) note that one method of estimation is to simply
drop observations where the dependent variable equals 0 or 1 (because
the transformation cannot be performed on these observations) and
estimate using OLS. The current paper uses a superior alternative to
estimating the fractional logit model suggested by Papke andWooldridge
(1996), which does not require dropping observations.11

As noted above, standard scientificmodels of light pollution focus on
population as the major and often only explanatory variable for the
existence of light pollution. The main point of this paper is to also
examine the impact of economic variables upon the existence and
extent of light pollution worldwide. Similar to earlier economic
researchers (e.g., Grossman and Krueger, 1995; Harbaugh et al., 2002),
Table 4 begins with three classes of explanatory variable: (1) the
common scientific explanation of light pollution—population as
measured by the percentage of the total population living in urban
areas, (2) ameasure of economic activity, GDP per capita, and (3) arable
land as a percentage of total land area.

Following earlier researchers (Grossman and Krueger, 1995;
Harbaugh, et al., 2002), we allow for the possibility that the relationship
between GDP and light pollution may have an inverted u-shape. For a
number of other pollutants, economic development tends to first
increase pollution then eventually decrease it as economic growth
continues. Because of its similarity to economic inequality functionsfirst
pointed out by Kuznets (1955), the inverted u-shape is often referred to
as an “environmental Kuznets curve” (EKC). That is, while economic
activity initially increases pollution, it may eventually lead to improved
environmental quality.12 There may be both supply-side factors (such
as full-cutoff lightfixtures that reduce glare and prevent uplighting) and
demand-side factors (such as less crime, a concern for wildlife, or a
11 As suggested by Papke and Wooldridge (1996), we estimate using STATA's GLM
procedure with family (binomial), link(logit), and robust. When the article was
published, STATA's GLM procedure could not estimate fractional logit models but has
since been updated to allow such estimation.
12 Testing the relevancy of the environmental Kuznets curve for light pollution is not
the main point of the current paper. However, GDP is one of the most important
economic variables and is included as a result. For more information regarding testing
for the environmental Kuznets curve see Merlevede et al. (2006).



13 Essentially, a cubic function may have two turning points. In this case, the impact
of GDP per capita on light pollution would at first be positive then, when reaching a
turning point, its impact would be negative. Finally, after reaching the second turning
point the function would again exhibit a positive relationship between GDP per capita
and light pollution. However, cubic functions may instead have one inflection point
rather than two turning points which implies that the function is monotonically
increasing aside from the inflection point.

Table 4
Fractional logit light pollution coefficient estimates and marginal effects by the percentage of the population or the surface area in light polluted state.

POP1 POP2 POP3 SURFACE1 SURFACE2

Intercept −3.1860⁎ −3.9540⁎ −2.9416⁎ −6.7324⁎ −9.8732⁎
(−15.60) (−16.70) (−12.22) (−12.11) (−9.40)

GDP per capita 0.0002⁎ 0.0002⁎ 0.0003⁎ 0.0005⁎ 0.0004⁎
4.92E-05 3.94E-05 5.84E-05 2.21E-05 3.31E-06
(2.96) (3.92) (2.01) (4.84) (3.03)

GDP Per Capita Squared −9.20E-09⁎⁎ −8.57E-09⁎ −2.04E-08 −2.35E-08⁎ −2.01E-08⁎⁎
−2.30E-09 −1.77E-09 −3.97E-09 −1.06E-09 −1.54E-10
(−2.20) (−2.93) (−1.45) (−3.94) (−2.41)

GDP Per Capita Cubed 1.39E-13⁎⁎ 1.13E-13⁎⁎ 4.53E-13 3.27E-13⁎ 2.67E-13⁎⁎
3.47E-14 2.33E-14 8.82E-14 1.48E-14 2.05E-15
(2.06) (2.51) (1.33) (3.66) (2.15)

Urban 0.0449⁎ 0.0490⁎ 0.0470⁎ 0.0359⁎ 0.0700⁎
0.0112 0.0101 0.0092 0.0016 0.0005
(10.79) (11.34) (8.48) (3.66) (4.18)

Arable 0.0199⁎ 0.0019 0.0440⁎ 0.0462⁎ 0.0216
0.0050 0.0004 0.0086 0.0021 0.0002
(4.25) (0.41) (5.82) (4.95) (1.51)

Number of observations 157 157 157 157 157
Log PseudoLikelihood −57.4963 −53.2835 −53.8001 −32.9362 −18.2491
First Turning Point $18,153.51 $16,516.45 $12,905.47 $15,375.99 $15,616.07
Total Effect 0.3428 0.2729 0.2821 0.1430 0.0219
Second Turning Point $26,034.77 $34,127.32 $17,102.08 $32,371.76 $34,465.23
Total Effect 0.3343 0.2093 0.2788 0.1067 0.0151
Percentage Decrease −2.48% −23.32% −1.16% −25.40% −31.29%

Asymptotic t-statistics in parentheses; marginal effects are in bold and are calculated at variable mean values.
⁎Indicates significance at the 1% level, ⁎⁎indicates significance at the 5% level; and ^indicates significance at the 10% level.
Total effect shows the impact of GDP, via a cubic function, on the dependent measure of light pollution, at the turning point. Percentage decrease measures the change in light
pollution between the two turning points and equals (TE2/TE1)-1.
NA indicates that no turning point exists (i.e., an inflection point exists in the cubic function but the function is otherwise monotonically increasing).
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desire to protect the historic legacy of the night sky) that would explain
this effect.

In short, our model adds economic activity to the well-established
population-based light pollution models. We focus on GDP and allow
for a possible Kuznets-type relationship. Unfortunately, the lack of
comparable economic data across many countries greatly limits our
possible explanatory variables. However, we are able to include some
basic variables that are indicative of a country's resources and
economic structure. These variables include arable land, energy
production, foreign direct investment (FDI), and roads.

We use the percentage of arable land to capture the impact of a
country's geography. For example, a country with lots of desert or
mountainous areas (less arable land) would tend to have less light
pollution. Abundant energymay allow for cheaper lighting. Moreover,
gas flares at wells and refineries add to light pollution directly, such
flares burn at least 150 billion cubic meters of natural gas annually
(World Bank, 2009). FDI is considered to be an important factor in
shaping the way many economies evolve. For instance, FDI can
accommodate projects on a larger scale with more advanced
technology than would otherwise be possible. Researchers have
shown, for example, that FDI increases air pollution in China, via scale
and technology effects (He, 2008). The percentage of roads that are
paved is a rough indicator of the level of infrastructure development.
We would expect this to have a positive impact on light pollution,
including the surface measures since paved roads promote economic
development of the hinterland.

Tables 4 and 5 include fractional logit regression coefficients of
individual explanatory variables. Marginal effects calculated at
independent variable means are also presented in Tables 4 and 5.
The main focus of the discussion in this section will be on the signs of
the coefficient estimates and their statistical significance. Table 4
illustrates that population does have the expected impact on light
pollution, as the percent of the population living in urban areas
increases then so does the level of light pollution. This result is present
whether using a population-based measure of light pollution or a
surface-area measure. Similar fractional logit regressions were run
using alternative measures of population, including population
density and the percent of the population living in rural areas, and
were found to have similar effects on light pollution.

Notice also, though, that measures of economic activity, real per
capita GDP, also tend to have statistically significant impacts on levels
of light pollution that first increase the percentages of the population
living in light pollution in a country although at a decreasing rate. A
similar result is found in Table 4whenmeasuring light pollution as the
surface area affected. This result suggests, unsurprisingly, that light
pollution is concentrated in areas with high levels of population and
that surface area measures of light pollution are also affected by
economic development.

Tables 4 and 5 also include calculations testing for the existence of
an EKC. First, as noted above, the regressions estimate the impact of
GDP assuming a cubic function. The results from Table 4 illustrate the
possibility of an EKC with an estimated positive impact of GDP per
capita on light pollution, a negative impact of GDP per capita squared,
and a positive impact of GDP per capita cubed. Although these results
are consistent with an EKC they still allow for the possibility that the
impact of GDP per capita on light pollution is monotonically
increasing.13 As a result, the actual estimates must be tested to see
whether or not the cubic function does or does not provide evidence
to support an EKC (Merlevede et al., 2006).

Tables 4 and 5 perform this test by presenting GDP per capita at the
first and second turning points of the cubic function. For example, the
impact of GDP per capita on POP1 is positive until GDP per capita
reaches the first turning point, which occurs at GDP per capita of
$18,153. The overall effect of GDP per capita on POP1 at this level is
.3428. That is, 34.28% of the population falls within the POP1 tier at the



14 As Table 3 illustrates, the five measures of light pollution are fractions that vary
between 0 and 1. However, all the other variables that are percentages are measured
in percentage terms and vary between 0 and 100.

Table 5
Fractional logit light pollution coefficient estimates and marginal effects by the percentage of the population or the surface area in light polluted state.

POP1 POP2 POP3 SURFACE1 SURFACE2

Intercept −3.3815⁎ −3.8766⁎ −3.4071⁎ −7.2732⁎ −10.5663⁎
(−16.41) (−15.08) (−14.67) (−11.63) (−10.32)

GDP per capita 0.0001 0.0002⁎ 0.0001 0.0004⁎ 0.0004⁎
2.80E-05 3.63E-05 2.23E-05 1.58E-05 2.21E-06
(1.41) (2.82) (0.71) (3.77) (2.86)

GDP Per Capita Squared −4.67E-09 −7.82E-09⁎⁎ −9.56E-09 −1.84E-08⁎ −1.59E-08⁎⁎
−1.17E-09 −1.62E-09 −1.85E-09 −7.39E-10 −9.88E-11
(−0.99) (−2.19) (−0.67) (−3.17) (−2.29)

GDP Per Capita Cubed 6.83E-14 1.04E-13^ 2.69E-13 2.55E-13⁎ 2.14E-13⁎⁎
1.71E-14 2.15E-14 5.21E-14 1.02E-14 1.33E-15
(0.90) (1.85) (0.78) (2.98) (2.07)

Urban 0.0411⁎ 0.0431⁎ 0.0444⁎ 0.0275⁎ 0.0582⁎
0.0103 0.0089 0.0086 0.0011 0.0004
(8.99) (8.80) (7.26) (2.64) (3.70)

Arable 0.0134⁎⁎ 0.0005 0.0355⁎ 0.0385⁎ 0.0186
0.0033 0.0001 0.0069 0.0015 0.0001
(2.28) (0.08) (4.98) (4.02) (1.31)

Energy 0.0119⁎⁎ 0.0154⁎ 0.0115 0.0137 0.0068
0.0030 0.0032 0.0022 0.0006 0.0000
(2.09) (2.90) (1.42) (1.13) (0.57)

Foreign Investment −0.0059 −0.0131 0.0164 0.0693^ 0.1563⁎
−0.0015 −0.0027 0.0032 0.0028 0.0010
(−0.32) (−0.59) (0.89) (1.75) (3.79)

Roads 0.0124⁎ 0.0052 0.0211⁎ 0.0189⁎ 0.0169⁎⁎
0.0031 0.0011 0.0041 0.0008 0.0001
(3.85) (1.57) (5.32) (3.71) (2.35)

Number of observations 133 133 133 133 133
Log pseudolikelihood −48.0544 −46.0003 −42.4396 −25.9593 −13.3809
First turning point NA $16,867.84 NA $15,971.18 $17,063.38
Total effect NA 0.2546 NA 0.1054 0.0156
Second turning point NA $33,364.72 NA $32,329.47 $32,460.43
Total effect NA 0.2063 NA 0.0831 0.0131
Percentage decrease NA −18.96% NA −21.18% −15.61%

Asymptotic t-statistics in parentheses; marginal effects are in bold and are calculated at variable mean values.
⁎Indicates significance at the 1% level, ⁎⁎indicates significance at the 5% level; and ^indicates significance at the 10% level.
Total effect shows the impact of GDP, via a cubic function, on the dependent measure of light pollution at the turning point. Percentage decrease measures the change in light
pollution between the two turning points and equals (TE2/TE1)-1.
NA indicates that no turning point exists (i.e., an inflection point exists in the cubic function but the function is otherwise monotonically increasing).
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first turning point. Thereafter, the impact of GDP per capita on POP1 is
negative until GDP per capita reaches the second turning point at
$26,035. The bottom of the table shows how much light pollution
would be reduced between these levels of income. Notice that the
negative impact of GDP per capita between the first and second
turning points is relatively slight, having only a negative 2.48% impact
on POP1. The decline in light pollution, between turning points, is
much larger for POP2 and the two surface variables.

Although Table 4 illustrates the existence of an EKC for all five
measures of light pollution, the negative impact between the first and
second turning points is noteworthy only for 3 of the 5 measures of light
pollution, POP2, and SURFACE1 and SURFACE2. For these light pollution
measures, sharply increasing GDPper capita between the first and second
turningpoints reduces light pollutionbybetween23and31%. Further, the
tests of the EKC provided in Tables 4 and 5 are only relevant aroundmean
values for per capita GDP, given that marginal effects vary as GDP per
capita varies.

Table 4 also shows that, as expected, the percentage of land that is
arable has a positive impact on light pollution. That is, less desert and the
like tends to be associated with more light pollution. These results are
statistically significant for 3 out of the 5 measures of light pollution. The
expanded models in Table 5 show similar results, with the same positive
relationships and statistical significance for the same three measures of
light pollution.

One of themain problemswith using the cross-sectional country-level
economic data with the light pollution atlas data, is that many countries
have missing values for the economic data. Different economic variables
havemore or fewernumbers ofmissing values. For example, a total of 184
countries have both light pollution atlas data and at least some economic
data. However, increasing the number of economic variables in the
fractional logit regressions has the impact of reducing the number of
observations. The fractional logit regression coefficients presented in
Table 4 are based on 157 of the original 184 countries. Thus, the most
parsimonious models have the advantage of increased numbers of
observations.

Table 5 presents fractional logit regression estimates with three
additional economic explanatory variables and, hence, a decreased
number of observations, now only 133 countries. The additional
economic variables included in Table 5 are energy resources extracted
during the year and FDI, both as a percent of gross national income.
Finally, the percentage of total roads in the country that are paved is
included as an additional measure of economic development.

Along with the reasons outlined above, energy extraction is likely to
increase levels of pollution, including light pollution, simply because it is
activity that occurs in the country. Table 5 illustrates that this
expectation is met in the fractional logit regression estimates with
energy extraction being positively associated with light pollution. In
general, the impact of energy extraction has a statistically significant
impact in the models where light pollution is population based but not
when light pollution is surface area based. Moreover, the impact of
energy extraction is relatively large with a marginal effect of
approximately .003 for the population measures of light pollution. In
other words a 10% increase in energy extraction yields a 3% increase in
the percentage of the population living in a light polluted state.14 Thus,
referring to the statistics inTable 3 for energy extraction, ifwe compared
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a country with the minimum, zero percent of its gross national income,
to a country with the maximum 73% then the percent of the population
living in a light polluted state would rise by 21.9%.15

Foreign direct investment affects the nature, scope, and scale of
capital projects. Table 5 shows that FDI generally decreases the
percentage of the population affected by light pollution, though this
effect is statistically insignificant. In contrast, increased FDI tends to
increase the surface area affected by light pollution, and these
estimates are statistically significant. While the impact on the
population variables is statistically insignificant, their contradiction
with the positive impact on the surface variables is interesting and
may warrant further investigation. It suggests that FDI helps push
development into the hinterland. One can readily imagine examples,
such as projects involving mining or logging, where this might be the
case.

Likewise, Table 5 illustrates that a more developed infrastructure
as measured by the percentage of roads paved within the country also
tends to increase light pollution. The coefficient estimates for Roads is
positive for all measures of light pollution, and statistically significant
in four of the five models.

Table 5 shows that adding the three additional explanatory
variables, FDI, energy depletion, and percent of roads paved have
little impact on the estimated impact of any of the other explanatory
variables. For example, adding these additional measures of economic
activity change none of the signs on the coefficient estimates for GDP
per capita although in a few cases these coefficient estimates do
become statistically insignificant. These results are consistent with
Harbaugh et al. (2002) who found that the existence of an EKC was
sensitive to functional form and the other economic explanatory
variables in the regression results. Table 5 does still find the existence
of an EKC, however, for the same three measures of light pollution as
in Table 4, POP2, SURFACE1, and SURFACE2.

Taken together the fractional logit regression results presented in
Tables 4 and 5 are a unique contribution to the environmental
literature, not the least because they provide the first evidence
regarding the importance of economic activity to global light
pollution. In general, the regression results provide consistent
evidence that both population and economic activity are important
explanatory variables when it comes to light pollution. The regression
results provide evidence that GDP and light pollution have a nonlinear
relationship consistent with various supply-side and demand-side
factors that can yield an EKC.
5. Conclusion

Light pollution is a serious problem with implications for wildlife,
human health, scientific research, energy consumption, global warm-
ing, and the ageless pastime of observing the night sky. Pristinely dark
skies are very scarce in the developed world and most of the world's
population—and nearly all of those living in the EU or the US—live
under skies with at least some light pollution. Economists have largely
ignored this issue, and existing models of light pollution emphasize
population as the determining factor. We have combined unique
remote sensing data on light pollution with economic data from the
World Bank to estimate fractional logit regression light pollution
models.

Thesemodels show that population, as measured by the percent of
the population living in urban areas, remains an important explana-
tion for the existence of light pollution. However, real per capita GDP
also tends to be a highly significant variable in explaining the percent
of a country's population affected by different levels of light pollution.
The relationship between income and light pollution is non-linear as
15 Of course, the marginal effects vary along the distribution of energy extraction.
might be expected from an EKC. Other economic factors such as
foreign investment and land use patterns also tend to be significant.

Quantifying the link between real GDP and various levels of light
pollution across the globe is a significant first step in correcting
economists' neglect of this important environmental issue. However,
much remains to be done. For example, it would be useful to know
what types of industries, if any, are most closely tied to light pollution.
This question, and many others, remained unanswered in no small
part because of the absence of uniform data, especially in developing
countries. More progress can be expected as more and better data
become available. Astronomers and others continue efforts to collect
satellite data and refine their modeling techniques. Our future
research will focus on regions, such as the United States, where
light pollution is very common and better economic data is available.
Continued research in this area is needed and will help illuminate the
economic aspects of light pollution.
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